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Following Peggs and Billing’s work [1, 2], the perturbation matrix approach to the weak linear coupling is
reset and developed. Two complex quantities, h+ and h−, are defined, that are related to the linear sum and
difference coupling resonances, respectively. Based on the perturbation approach, H, r, C in the normalized
coordinate system are analytically calculated in different coupling regimes. Six observables of the weak linear
difference coupling are defined. Their analytical solutions are obtained. Comparisons ar made between the
matrix perturbation approach and the Hamiltonian weak coupling approaches.

1 Introduction

Linear betatron coupling was successfully parameterized through the strict matrix approach [3, 4, 2, 5, 6],
where Twiss and coupling parameters are defined at each point in the ring. The uncoupled motions are
obtained through a matrix similarity transformation. The strict matrix approach is valid for strong and
weak coupling. However, it is not straightforward to assign analytical expressions to the coupling parameters
and the tune shifts for the weak coupling, or for random coupling source distribution situation.

In this article, following Peggs and Billing ’s work [1, 2] , the matrix perturbation approach to weak linear
coupling is reset and developed in the normalized coordinate system. First, the one-turn transfer matrix
in the normalized coordinated system is derived again and then decoupled. H, r, C in that coordinate
system are analytically calculated in different coupling regimes. Six observables of the weak linear difference
coupling are defined. Their analytical solutions are obtained. The six observables can be experimentally
obtained from the turn-by-turn beam position monitor (BPM) (x, y) data. Comparisons are made between
the perturbation matrix approach and the Hamiltonian perturbation approaches.

2 Strict Matrix approach

In the section, the strict matrix approach to linear coupling is reviewed. The linear coupling’s action-angle
parameterization gives the general coordinate expressions. The normalized coordinate system is introduced,
and the one-turn transfer matrix in the coordinate system is decoupled, similarly to that in the laboratory
system.

2.1 In the laboratory coordinate system

The transverse one-turn transfer matrix T at one point in the ring is

T =

(
M m
n N

)
, (1)

that can be decoupled based on a matrix similarity transformation [3, 4, 2],

T = V

(
A 0
0 B

)
V−1, (2)

where

V =

(
rI C
−C+ rI

)
. (3)

1



To easily distinguish Twiss parameter γ, I use r in V instead of γ used in other literature. I is 2 × 2 unit
matrix. C is the coupling matrix,

C+ =

(
c22 −c12

−c21 c11

)
, (4)

r and C are connected by r2 + ||C|| = 1.
A and B define the two uncoupled eigen mode motions. They usually are parameterized to give Twiss

parameters according to Courant and Snyder’s uncoupled one-dimensional parameterization[7],

(
cos(2πµi) + αi sin(2πµi) βi sin(2πµi)

−γi sin(2πµi) cos(2πµi)− αi sin(2πµi)

)
. (5)

Since the two eigen tunes are

2 cos(2πµI,II) = 1
2(TrM + TrN)

±1
2

√
(TrM−TrN)2 + 4||m+ + n||,

(6)

where the sign is chosen assuming that eigen mode I is more related to the horizontal plane than the vertical
plane. Therefore,

[Tr(A−B)]2 = [Tr(M−N)]2 + 4||m+ + n||. (7)

Defining
H = m + n+, (8)

and comparing Eqs. (1) and (2), after some algebra, one obtains [2, 5]

r =

√√√√1

2
+

1

2

√
[Tr(M−N)]2

[Tr(M−N)]2 + 4||H|| , (9)

C = − H

rTr(A −B)
. (10)

2.2 The action-angle parameterization [6]

The linear coupling’s action-angle parameterization is convenient for carrying out analytical calculations and
for interpetating the experimental turn-by-turn BPM data.

A and B in Eq. (2) can be further parameterized like UiR(2πµi)U
−1
i , i = I, II , where

Ui =

( √
βi 0
−αi√
βi

1√
βi

)
. (11)

Then, the one-turn transfer matrix T is rewritten as

T = VUR(2πµI,2πµII)U
−1V−1, (12)

where

U =

(
UI 0
0 UII

)
, (13)

R(∆ΦI,∆ΦII) =

(
R(∆ΦI) 0

0 R(∆ΦII)

)
, (14)

R(∆Φi) =

(
cos ∆Φi sin ∆Φi
− sin ∆Φi cos ∆Φi

)
. (15)

According to the action-angle parameterization, the particle’s coordinate X = (x,x′,y,y′) in the labo-
ratory coordinate system is

X = P




√
2JI cos ΦI

−√2JI sin ΦI√
2JII cos ΦII

−
√

2JII sin ΦII


 , (16)
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where JI,II are the globally constant actions of the two eigen modes, and ΦI,II are the eigen mode phases.
P can be obtained analytically or experimentally. If it is described in Twiss and coupling parameters

defined above,
P = VU. (17)

One can prove that p12 = 0, p34 = 0.

2.3 In the normalized coordinate system

Defining the normalized coordinate X as
X = U−1X, (18)

then according to Eq. (16),

X = V




√
2JI cos ΦI

−√2JI sin ΦI√
2JII cos ΦII

−√2JII sin ΦII


 , (19)

where
V = U−1VU. (20)

The transfer matrix T1→2 in the normalized coordinate system is

T1→2 = U−1
2 T1→2U1, (21)

where U1 and U2 are the U ( Eq. (13) ) at point 1 and point 2, respectively. In uncoupled situation, it is
reduced to

T1→2 = R(∆φx,∆φy), (22)

where ∆φx and ∆φy are the horizontal and vertical phase advances between the two points. The one-turn
transfer matrix T in the normalized coordinate system is

T = U−1TU. (23)

Substituting Eq. (12) into Eq. (23), T is decoupled as in the laboratory coordinate system,

T = VR(2πµI,2πµII)V
−1
, (24)

V is given by Eq.(20), and is rewritten similarly as that in the laboratory coordinate system,

V =

(
rI C

−C
+

rI

)
, (25)

where r2 + ||C| = 1.
At any point in the ring, substituting Eqs. (3) and (25) into (20), one gets

H = U−1
I HUII, (26)

C = U−1
I CUII. (27)

Therefore,
||H|| = ||H||, (28)

||C|| = ||C||, (29)

r = r. (30)

In the following discussion, I do not distinguish between r and r.

3 Perturbation Matrix approach

In this section, the perturbation matrix approach to the weak linear coupling is reset systematically. And
two complex quantities, h+ and h− are defined, that are related to the linear sum and difference coupling
resonances, respectively.
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3.1 Perturbed one-turn matrix

Here the perturbed one-turn transfer matrix in the normalized coordinate system is derived again. According
to Eq. (21), the transfer matrix for a thin skew quadrupole in the normalized coordinate system is

Msq,j =

(
I qjQ
qjQ I

)
, (31)

where qj =
√
βx,jβy,j(ksdl)j , βx,j and βy,j are the unperturbed betatron amplitude functions, (ksdl)j is the

integrated skew quadrupole strength,

Q =

(
0 0
1 0

)
. (32)

So in the normalized coordinate system, the perturbed one-turn transfer matrix at one point is

T = RN+1Msq,NRN...Msq,2R2Msq,1R1, (33)

where Rj = R(∆φx,j,∆φy,j), ∆φx,j ,∆φy,j are the uncoupled horizontal and vertical phase advances between
the adjacent skew quadrapoles.

We define a new matrix M
′

sq,j , that meets

Msq,jR(φx,j, φy,j) = R(φx,j, φy,j)M
′

sq,j. (34)

where φx,j , φy,j are the uncoupled betatron phase advances from the jth skew quadrupole magnet to the
reference point at which the one-turn transfer matrix is calculated. Therefore,

M
′

sq,j = R−1(φx,j, φy,j)Msq,jR(φx,j, φy,j)

=

(
I R(−φx,j)qjQR(φy,j)

R(−φy,j)qjQR(φx,j) I

)
,

(35)

or in compact,

M
′

sq,j =

(
I Fj

−F+
j I

)
, (36)

Fj = R(−φx,j)qjQR(φy,j). (37)

Considering Eq. (34), the one-turn transfer matrix T Eq. (33) is re-written as

T = R(2πµx,2πµx)M
′

sq,NM
′

sq,N−1...M
′

sq,2M
′

sq,1, (38)

where µx,y are the uncoupled horizontal and vertical tunes without any couplers. If we only keep the terms
up to the first order of skew quadrupole strength qjs, the one-turn transfer matrix Eq. (38) is approximated
as

T =

(
Rx 0
0 Ry

)(
I F
−F+ I

)

=

(
Rx RxF

−RyF+ Ry

)
,

(39)

where

F =

N∑

j=1

Fj. (40)

For simplicity, hereafter I use Rx, Ry to represent R(2πµx), R(2πµy), respectively.
Two assumptions were used above. One is the thin lens skew quadrupole, the other is the weak coupling

that means qj is small for each individual skew quadrupole. Peggs first obtained Eq. (39) in [1] with the
projection approach.
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3.2 Matrix H

Decouple the perturbed one-turn transfer matrix Eq. (39),

r =

√√√√1

2
+

1

2

√
Tr(Rx −Ry)2

Tr(Rx −Ry)2 + 4||H||
, (41)

C = − H

rT r(A−B)
, (42)

where
H = RxF + (−RyF)+ = RxF− FR−1

y , (43)

[Tr(A−B)]2 = [Tr(Rx −Ry)]2 + 4||H||. (44)

H can be analytically calculated. Following Billing’s suggestion[2], H is rewritten as

H = sinπ(µx + µy)H− + sinπ(µx − µy)H+J, (45)

where

H− =

N∑

j=1

qjR[π(µx − µy)− (φx,j − φy,j)], (46)

H+ =

N∑

j=1

qjR[π(µx + µy)− (φx,j + φy,j)], (47)

J =

(
1 0
0 −1

)
. (48)

It can be proved that
||H|| = sin2 π(µx + µy)||H−|| − sin2 π(µx − µy)||H+||. (49)

Here, two complex quantities are defined,

h− =

N∑

j=1

qje
i[π(µx−µy)−(φx,j−φy,j )], (50)

h+ =
N∑

j=1

qje
i[π(µx+µy)−(φx,j+φy,j )]. (51)

Therefore,

H− =

(
Re{h−} Im{h−}
−Im{h−} Re{h−}

)
, (52)

H+ =

(
Re{h+} Im{h+}
−Im{h+} Re{h+}

)
, (53)

||H|| = sin2 π(µx + µy)|h−|2 − sin2 π(µx − µy)|h+|2, (54)

where Re and Im take the real and the imaginary parts of a complex number, respectively.
According to Eqs. (50) and (51), if h± are calculated at two points in the ring, and there is no coupler

between them, then
h−,2 = h−,1e

i(∆φx−∆φy), (55)

h+,2 = h+,1e
i(∆φx+∆φy), (56)

where ∆φx, ∆φy are the unperturbed horizontal and vertical phase advances. The beam circulates from
point 1 to point 2. If h± are calculated just before and after a thin skew quadrupole, one obtains

∆h− = −2qj sinπ(µx − µy), (57)

∆h+ = −2qj sinπ(µx + µy). (58)
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3.3 r and C

Knowing H, then according to Eqs. (41), (42), r and C can be determined. For weak coupling, from Eq. (44),
the determinant of H should be a global constant. Therefore, according to Eq. (41), r is a global constant,
too.

Considering Eqs. (50) and (51), according to Eq. (42), we obtain

C = − 1

rT r(A−B)

(
sinπ(µx + µy)Re{h−}+ sinπ(µx − µy)Re{h+} sinπ(µx + µy)Im{h−} − sinπ(µx − µy)Im{h+}
− sinπ(µx + µy)Im{h−} − sinπ(µx − µy)Im{h+} sinπ(µx + µy)Re{h−} − sinπ(µx − µy)Re{h+}

)
.

(59)
And from Eq. (59),

c11 − c22 − i(c12 + c21) = −2 sinπ(µx − µy)h+

rT r(A−B)
, (60)

c22 + c11 + i(c12 − c21) = −2 sinπ(µx + µy)h−
rT r(A−B)

. (61)

4 Different weak linear coupling regimes

4.1 Stability criterion

Assuming the thin skew quadrupole and weak coupling, from Eq. (44), one gets

(cos 2πµI − cos 2πµII)
2 = (cos 2πµx − cos 2πµy)2 + ||H||. (62)

Therefore, the stable condition for the particle motion is

(cos 2πµx − cos 2πµy)2 + ||H|| > 0, (63)

that is,
(cos 2πµx − cos 2πµy)2 + sin2 π(µx + µy)|h−|2 − sin2 π(µx − µy)|h+|2 > 0. (64)

It is clear that h− is related to the linear difference coupling, while h+ is related to the linear sum coupling.
When the accelerator is working close to the linear difference coupling resonance µx − µy − p = 0, where p
is the integer tune split, h− is dominant term since the contribution from the individual skew quadrupole to
h− sums up. While close to the linear sum coupling, h+ is dominant term.

Therefore, the particle motion is stable when the accelerator is working close to or on the linear difference
coupling resonance. However, there is a stop-band for the linear sum difference coupling resonance, which is
given next.

4.2 Linear difference coupling resonance

When the accelerator is working close enough to the linear difference coupling resonance, we can ignore h+,
then according to Eqs. (44) and (41),

|Tr(A−B)| =
√

4(cos 2πµx − cos 2πµy)2 + 4 sin2 π(µx + µy)|h−|2, (65)

r =

√√√√1

2
+

1

2

√
sin2 π(µx − µy)

sin2 π(µx − µy) + 1
4 |h−|2

, (66)

√
2

2
≤ r < 1. (67)

And, following Eq. (59), the normalized C is

C = − sinπ(µx + µy)

rT r(A−B)

(
Re{h−} Im{h−}
−Im{h−} Re{h−}

)
. (68)

According to Eqs. (62) and (54), the fractional eigen tune split is

(µI − µII − p)2 = (µx − µy − p)2 + (
1

2π
|h−|)2, (69)
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the minimum tune split is 1
2π |h−|.

If the accelerator is working exactly on the linear difference coupling resonance, where µx − µy − p = 0,

|µI − µII − p| =
1

2π
|h−|, (70)

r =

√
2

2
, (71)

C = − 1√
2|h−|

(
Re{h−} Im{h−}
−Im{h−} Re{h−}

)
. (72)

4.3 Linear sum coupling resonance

Similarly, when a particle’s motion is close to the linear sum coupling resonance, we can ignore h−,

|Tr(A−B)| =
√

4(cos 2πµx − cos 2πµy)2 − 4 sin2 π(µx − µy)|h+|2, (73)

r =

√√√√1

2
+

1

2

√
sin2 π(µx + µy)

sin2 π(µx + µy)− 1
4 |h+|2

, (74)

r > 1. (75)

And the normalized C is

C = − sinπ(µx − µy)

rT r(A −B)

(
Re{h+} −Im{h+}
−Im{h+} −Re{h+}

)
. (76)

According to Eqs. (62) and (54), we derive

(µI + µII − p)2 = (µx + µy − p)2 − (
1

2π
|h+|)2, (77)

where p is an integer making (µx + µy − p) close to zero. The stable condition for the linear sum coupling
resonance is

|µx + µy − p| >
1

2π
|h+|, (78)

Therefore, 1
2π |h+| is the stop-band for the linear sum coupling resonance.

4.4 Far away from the linear coupling resonances

When the accelerator is working at distance away from the linear coupling resonances, h− and h+ are both
small, and so is ||H||. Therefore,

Tr(A−B) = Tr(Rx −Ry) = 4 sinπ(µx + µy) sinπ(µx − µy), (79)

r = 1. (80)

The normalized C is

C = −1

4




Re{h−}
sinπ(µx − µy)

+
Re{h+}

sinπ(µx + µy)
Im{h−}

sinπ(µx − µy)
− Im{h+}

sinπ(µx + µy)

− Im{h−}
sinπ(µx − µy)

− Im{h+}
sinπ(µx + µy)

Re{h−}
sinπ(µx − µy)

− Re{h+}
sinπ(µx + µy)


 . (81)

5 Difference coupling observables

Beside the two eigen tunes, another four quantities are defined as the weak different coupling observables.
Their analytical solutions are given. They play very important roles in the linear difference coupling obser-
vations and imply possible global decoupling loops for the weak linear difference coupling.
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5.1 6 coupling observables

The general BPM (x, y) data are written as





xn = AI,x cos[2πµI(n− 1) + φI,x,0]
+AII,x cos[2πµII(n− 1) + φII,x,0]

yn = AI,y cos[2πµI(n− 1) + φI,y,0]
+AII,y cos[2πµII(n− 1) + φII,y,0]

. (82)

Ai,x or Ai,y are mode i’s contribution to the x or y plane, respectively. They are non-negative numbers.
φi,x or y,0 are the initial phases.

The tune split Eq. (69) usually is used for the global linear difference coupling measurement and correction
purposes. Besides the two eigen tunes µI and µII , here another four observables are defined: two amplitude
ratios and two phase differences, 




RI =
AI,y
AI,x

RII =
AII,x
AII,y

, (83)

{
∆φI,0 = φI,y,0 − φI,x,0
∆φII,0 = φII,x,0 − φII,y,0 . (84)

In the uncoupled situation, the values of RI , RII equal zero, and ∆φI,0 and ∆φII,0 have no meaning.

5.2 Analytical solution

According to Eqs. (18) and (16), together with the uncoupled Twiss parameters, the (x, y) coordinates are





x = r
√
βx
√

2JI cos ΦI
+c11

√
βx
√

2JII cos ΦII − c12

√
βx
√

2JII sin ΦII
y = −c22

√
βy
√

2JI cos ΦI − c12

√
βy
√

2JI sin ΦI
+r
√
βy
√

2JII cos ΦII

. (85)

Therefore, the amplitude ratios and the phase differences are





RI =

√
βy
βx

√
c222 + c212
r

RII =

√
βx
βy

√
c211 + c212
r

, (86)





∆φI,0 = − arctan c12
c22

∆φII,0 = arctan c12
c11

. (87)

For the linear weak difference coupling, considering Eq. (68), one gets





RI =

√
βy
βx

√
1− r2

r

RII =

√
βx
βy

√
1− r2

r

, (88)

{
∆φI,0 = π − χ
∆φII,0 = χ

, (89)

where χ is h−’s phase, h− = |h−|eiχ. Defining

R = RIRII , (90)

then

R =
1− r2

r2 . (91)
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The tune split Eq. (69), the amplitude ratios Eq. (91) and the phase differences Eq. (89) play important
roles in the linear difference coupling observations. They imply three possible loops for the global decou-
pling [8]. In [8], the analytical solutions to the six weak linear difference coupling observables are obtained
through the Hamiltonian perturbation theory[9, 10, 11]. C. Gardner also obtained similar expressions for
the amplitude ratios and the phase differences through the direct matrix approximation under the weak
coupling [12].

6 Comparison to weak coupling’s Hamiltonian approaches

Guignard developed the Hamiltonian perturbation theory for the linear coupling[9, 10, 11]. By isolating
the leading linear sum or difference coupling resonance, the eigen tunes are calculated through the defined
coupling coefficients, which are defined as

C± =
1

2π

∫ L

0

√
βxβykse

i[φx±φy−2π∆·s/L]dl, (92)

where ∆ = µx±µy−p, ps are integers which make ∆s close to zero. Comparing this to the definitions of h±,
it is found that C± only includes the leading sum or difference coupling resonance. When the accelerator is
exactly working on the linear coupling resonances,

C± =
1

2π
h∗±, (93)

h∗± are h±’s conjugates.
The weak linear coupling’s Hamiltonian perturbation theory is widely used for the global coupling mea-

surement and correction. However, this approach treats the sum and difference coupling resonance sepa-
rately. It works close to the weak coupling resonances, and is not convenient for the turn-by-turn BPM data
interpretation.

Bartolini and Schmidt proposed another Hamiltonian approach to the weak linear coupling in [13].
Through the perturbed Hamiltonian Normal-Form, the turn-by-turn normalized coordinates are expressed
in the driving terms. These driving terms for linear coupling are

f1001,1010 = − 1

4[1− ei2π(µx∓µy)]

N∑

j=1

(ksdl)j
√
βx,jβy,je

i(φx,j∓φy,j ), (94)

where f1001,1010 are related to the linear difference and sum couplings, respectively. This approach is used
experimentally at the sextupole and skew quadrupole locations with the turn-by-turn BPM data [14]. The
perturbed Hamiltonian Normal-Form works away from the resonances [13].
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